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This paper investigates a class of bead-rod and bead-spring models which have been 
proposed to describe the dynamics of an isolated macromolecule in a flowing solution. 
Hassager ( 1 9 7 4 ~ )  has pointed out a surprising result in regard to these models: the 
statistical conformation of a molecule (and hence its influence on the flow) apparently 
depends upon whether a very stiff-springed model structure or a rigid one is used. 
This paradox is examined and resolved. It is shown that a unique answer is obtained 
by regarding the system as the classical limit of a quantum-mechanical one. The 
extent of the quantum influence can be characterized by a dimensionless group Q .  
For a ‘hot’ or ‘large’ system (for which Q-+ 0 )  the classical (stiff spring) results are 
recovered. The effects of the parameter Q on the size of the molecules and the rheology 
of the solution are calculated in detail for a simple model, and the gross features are 
identified for a more realistic R.ouse chain model, each in both weak and strong flows. 

A final section considers weak, rapidly varying flows. It is shown that, within the 
context of classical (non-quantum) physics, for sufficiently rapid changes any model 
structure will tend to move with the applied flow, and therefore exert no stresses on 
the fluid. This explains the theoretical observation of Fixman & Evans (1976) that, 
in regard to the particle stress, the limits of rigidity and infinitely high frequency do 
not commute. 

1. Introduction 
Polymer solutions, and polymeric materials generally, frequently display complex, 

non-Newt’onian flow behaviour. I n  the case of polymer melts, an understanding of 
the rheology has direct industrial application; for dilute solutions the flow properties 
can be used to infer the gross features of the structure of the dissolved molecule, and 
are also of interest in their own right in that the solution affords an example of a non- 
Newtonian material whose constitutive equation can be predicted from a knowledge 
of the constituent parts of the solution, a t  least in so far as such molecular information 
is available. A linear polymer molecule may be envisioned as a long chain of say lo4 
rigid repeating units (monomers) each of length about 3A hinged to their neighbours 
a t  the backbone carbon atoms a t  their ends. The hinges, while providing some con- 
straining potentials to resist relative rotational motions, permit considerable flexibility 
in the structure, which therefore changes in response to both random Brownian 
motions and coherent forces exerted by the solvent molecules. Since these solvent 
molecules are very much smaller than the polymer, the solvent may be regarded as a 
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continuum, but with an  appropriate allowance for the thermal fluctuations. (The fact 
that  the solvent molecules are comparable in size with the monomers means that the 
solvent-solute interactions involved in these thermal motions are complex. Their 
detailed calculation remains an open question.) With this simplification, the problem 
of determining the constitutive relation for the solution regarded as a continuum 
follows in essentially the same way as for suspensions of rigid particles (see e.g. 
Batchelor 1970), but with the additional theoretical difficulty of finding a suitable, 
tractable model of the molecule that will incorporate its important physical features. 

The simplest macromolecular model, the dumb-bell model, was introduced by Kuhn 
in 1934. The solvent-molecule interaction is imagined to be concentrated in two point 
friction centres (called ‘beads’), joined by a Hookean spring connector (assumed 
to  exert no hydrodynamic force, and of zero natural length). The elasticity of the con- 
nector (the ‘entropic spring’) is chosen t o  model the random thermodynamic motions 
of the backbone carbon atoms of the real chain which endeavour to  keep the chain in 
its most probable, spherically symmetric configuration. 

This model was later improved by Rouse ( 1  953) and Zimm ( 1  956) who incorporated 
more of the known structure by means of a chain of ( N  + 1) beads joined by N Hookean 
springs. This structure has become known as the Rouse-Zimm chain. I n  Rouse’s 
version the beads are hydrodynamically independent (this simplification permits 
an analytic solution) while, in Zimm’s treatment, Oseen interactions are included. I n  
either case, however, the linearity of the springs means that when the model is placed 
in a sufficiently strong flow, the solvent forces on it will dominate the restoring force and 
so the extension will grow without bound. This defect can be remedied by replacing 
the springs with rods (a ‘ bead-rod ’ model). This idea seems first to  have been suggested 
by Kramers (1944), in a paper which attracted little attention, and more recently has 
been exploited by Hassager ( 1974a) in discussing rheological properties. 

Polymer models are used to  estimate the average dimensions of macromolecules for 
the interpretation of both light-scattering experiments and also sedimentation data. 
The standard results for equilibrium properties are given by Flory (1969), who again 
uses a bead-rod model, though as we note below his results differ from those of 
Kramers. 

More recently, all manner of combinations of beads, springs and rods have been 
used in ever more sophisticated models (see the review article of Bird et al. 1977). I n  
addition a difficulty has arisen. Hassager ( 1 9 7 4 ~ )  has pointed out that, in models 
where Brownian effects are present, there is apparently a quantitative difference 
between structural features involving rigid constraints (rods) and the limiting process 
in which flexible constraints (springs of non-zero equilibrium length) are frozen. This 
discrepancy manifests itself in calculations both of the average size of the macro- 
molecules, and of their rheological influence. I n  § 2 we demonstrate this difference 
explicitly. It is of some theoretical importance, since conceptually there is no difference 
between the two cases, a t  any rate from a classical mechanical point of view, and the 
absence of agreement casts doubt on both sets of results. 

I n  9 3 we demonstrate that  the problem has arisen from a failure to recognize the 
importance of quantum mechanics when limits of rigidity are to be taken. The same 
difficulty arises in calculating the specific heats of polyatomic molecules a t  low 
temperatures. The expectation that ‘stiff’ and ‘rigid’ are equivalent may not be valid 
in statistical mechanics, and quantum physics are required to  resolve the problem. 
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FIGURE 1. (n) Definition sketch for the trumb-bell. (b) Vectors defining the plane of the trumb-bell. 
( c )  Euler angles defined by the orientation of the trumb-bell. 

The rheological and geometrical influence of the quantum terms are evaluated for a 
Rouse chain in equilibrium ( 3  4) and flow, both weak and strong ($5). I n  order to 
produce a tractable solution we shall make the Rouse approximation of ignoring 
hydrodynamic interactions between the beads of any one macromolecule. Further the 
assumption of diluteness means that inter-molecular interactions are to  be ignored; 
neither of these features is central to  the physics of the paradox under discussion, and 
each would unnecessarily obscure the issue. 

A further difficulty for models with rigid components has been pointed out by 
Fixriian & Evans (1976), who consider stresses induced by weak but very high fre- 
quency flows. They show that the limits of freezing degrees of freedom and of infinitely 
high frequency do not commute. I n  3 6 we demonstrate that this phenomenon is, in 
fact, entirely distinct from the quantum-mechanical one previously described, and 
advance a classical physical explanation for the difference between the two limiting 
processes. 

A summary of the principal conclusions of the paper is given in 3 7. 

2. Summary of previous work 
We start by giving an example of the type of difficulty which arises. The simplest 

is afforded by a Rouse chain with N = 2 (Hassager 1974a), i.e. with just two springs 
of non-zero equilibrium length and three beads as shown in figure 1.  We will call such 
a particle a trumb-bell. The same term will be used when the springs are replaced by 
rods. As usual, the springs are supposed freely hinged a t  r1 so that no potential 
hinders the free rotation of b2 relative to b'. We now consider a suspension of such 
model particles in a viscous fluid, with no imposed flow. Then the effect of Brownian 
agitations will be to cause the system to settle down to thermodynamic equilibrium. 
The question arises as to  the distributionp(8) of the included angle 8 for this equilibrium 
state. 

Now we may plainly factor out an irrelevant motion associated with the system 
centre of mass, and also an overall rotation of the plane of the trumb-bell. With these 
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simplifications there remain just  three degrees of freedom: the lengths ofthe springs 
and the included angle. I n  the case where the springs are frozen into rods, there is 
just one degree of freedom left, 8. For a system in thermodynamic equilibrium we have 
(Landau & Lifschitz 1959) that the phase space distribution f is Maxwell-Boltzmann, 
i.e. 

f (P, 9) = const. exp r - S(P, q)/kTl, 

where the q’s are generalized co-ordinates for the system and the p’s are the conjugate 
momenta. E is the energy associated with the phase point p, q; T is the temperature, 
and k Boltzmann’s constant. Further, since on the time scale of interest it is only 
the distribution of the q that  need concern us, the configuration space probability 
distribution is given by 

p(q) = s f (P .  9) dP = const.Jexp ( - 4 P ,  q ) / W  dP. (2.1) 

Now it is straightforward to  show that in the case of springs of arbitrary stiffness, 
(2.1) gives for the trumb-bell 

p(8) = const. sin 8. (2.2) 

Whereas if the springs are considered rigid, so the momenta conjugate to their lengths 
never appear, then 

p(8 )  = const. ( I  - 4 cos28)S sin 8. (2 .3)  

Equation (3.3) is derived on the assumption that the masses of all the beads are equal; 
(2.2) is valid independently of such an assumption. Explicit derivations are given in 
5s 4.2 and 4.3. We see that the expressions are unequal. Equation (2.3) would appear 
first to have been derived by Kramers (1944), and effectively the same result is used 
by Kirkwood and co-workers (1948, 1967). More recently results of the same type 
have been developed (Hassager 1974a, b ;  Curtiss, Bird & Hassager 1974). On the 
other hand Flory (1969) in his work on polymer configurations has employed (2 .2)  
and its analogues; while Fixman & Rovac (1974a, b )  and Fixman & Evans (1976) 
have calculated rheological properties on essentially the same basis. A comparative 
analysis of these approaches is given in table 1. 

We shall see in $ 3  3 and 4 that  (2.2) is valid for the trumb-be11 in appropriate limiting 
circumstances, but that in general a new form (4.14) is required. Equation (2 .3)  never 
appears as a natural limit when a full quantum-mechanical analysis is performed for 
the trumb-bell with quantized vibrations of the springs. It remains possible that (2.3) 
might arise as the classical limit of a quantum system in which the degrees of freedom 
corresponding to the rods were absent ab init io,  but only in so far as such an analysis 
is itself a consistent application of quantum mechanics to  the trumb-bell with rods. 
This paper takes the view that i t  is not, because of the uncertainty in the momentum 
of a rod given its length. The formal correctness of (2.3) is strongly supported by the 
evidence of the numerical experiment of Gottlieb & Bird (1976), but their use of 
classical rather than quantum dynamics in the formulation of the numerical equations 
of course begs the question raised in this paragraph. 
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3. Order of magnitude analysis 
The substance of our explanation of the discrepancy will involve quantum mech- 

anics, so before considering the detailed mathematics of the problem we give some 
order of magnitude estimates of the physical parameters which appear. 

Consider some degree of freedom for the system in the limit as the force which 
constrains i t  become infinitely large (i.e. that  degree of freedom disappears). It is 
perhaps conceptually easiest to  imagine a ‘spring’ of non-zero natural length in the 
limit as it becomes a (rod’. Then there are two natural dimensionless parameters 
associated with that degree of freedom: its rigidity; and its smallness on a scale 
naturally associated with Planck’s constant f i .  Thus, if 1 is a typical length, K a stiffness 
(which becomes arbitrarily large), and e a typical vibrational energy, then 

a = ( € / K 1 2 ) 6  (3.1) 

measures the dimensionless variation in the length of the spring, and a+ 0 for a very 
stiff spring. 

A second dimensionless parameter appears, however, from the consideration of 
quantum mechanics. Associated with the large (but finite) stiffness there will be a 
natural frequency of oscillation 11 with 11 N (K/ml2)1, where m is a typical mass. It 
follows that, if the corresponding quantized energy &v is comparable to E ,  then 
classical mechanics will be inappropriate. I n  other words, defining 

p = ?iV/€, (3.2) 

quantum mechanics become important when p 2 1. 
It is clear that  a and /3 are independent parameters characterizing the system and 

we may therefore identify two limiting parameter regimes which are different, though 
both are rigid in the sense R: < 1. 

(i) a < 1, 
(ii) a < 1, 

p 2 1, 
/3 < 1, 

the rigid quantized regime. 
the rigid classical regime. 

It will be shown that the failure to distinguish between (i) and (ii) has been the source 
of much of the confusion in the literature. 

We consider first near-equilibrium states for which (by energy equipartition) 6 may 
be replaced by kT. Then if we take a value a = 10-l to  define a ‘stiff’ system, (3.2) 
gives p = (10 ?ill) (kT/m):.  Substituting typical values does not provide any clear 
indication as to which of (i) or (ii) to use, for if m and 1 are taken as those appropriate 
to a monomer unit then p is large, about 10, and so, hardly surprisingly, quantum 
physics are important in handling the molecular vibrations (cf. spectral analysis). On 
the other hand if, in the spirit of modelling, m, 1 are representative of random coil of 
say 104 bonds, then /3 is small and (ii) can be used. 

There are two circumstances in which our estimate of /3 may be altered. The first 
is that  where a strong flow is present, then 8 is no longer typically k T  but <El2 where 
g is a friction constant for a bead, and E is a measure of the shear rate. Second, this 
estimate of the flow strength is itself altered when there are N ($  1) units in the chain 
(for the flow, when strong, can extend the chain and so produce very large velocity 
differences between its ends). These considerations lead us to define the following 
dimensionless parameters. 
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(i) A monomer PBclet number P = CEl2/2kT,  the ratio of flow forces to thermal 
vibrations for a single unit. (3.3) 

(3.4) 

(3-5) 

(3.6) 

(ii) A polymer P6clet number 9' = N P  appropriate for extended states. 

(ii) A quantum number appropriate for near equilibria Q = f i v / k T .  

(iv) A quantum number appropriate for strong flows d = Q / N P .  

4. The equilibrium problem 
4.1. General formulation 

In  this section we follow G6 & Scheraga (1969) and construct an apparatus to deal 
with a general system in equilibrium, and derive the rigid quantized and rigid classical 
limits. In  $ 5 the analysis for the rigid quantum limit is generalized to include the 
non-equilibrium problem, and detailed solutions are given for the test case of a trumb- 
bell. 

4.1.1. Notation and conventions. Suppose we have a system characterized by 
generalized co-ordinates qi,  i = 1, . . . , N .  We shall be concerned to 'freeze' the co- 
ordinates qA, A = M + 1, . . . , N to values of zero, say, while leaving the p", a = 1, . . . , M 
unconstrained. We adopt the convention that suffixes i , j ,  . . . are to run from 1 to N ;  
a,p, . . . from 1 to M ;  and A ,  B,  . . . from M + 1 to N .  Where matrices are partitioned this 
will be shown by their suffixes, e.g. 

gij = (Yt!?../..s,l)* 
gAa gAB 

We suppose that the system has kinetic and potential energies given by 

where gij and 
'metric tensor' for the co-ordinates, and define gij as its inverse, i.e. 

are each functions of the variables p i .  We then regard gir as the 

gijgjk = 8;. (4.1) 

Note that in general the partitioned form of gi j  does not consist of the inverses of the 
partitioned form of g i j :  the typical relationships between them are given by 

9"' = (gal  - gaA g2'B gBB)-', 

gaA = - (gay - gaC gzh gDy)-' g y B  gBf4. 

Finally, the momenta conjugate to the q's are defined by 

pi = gijqi = aT/a$. 

4.1.2. Classical thermodynamic equilibrium. In  thermodynamic equilibrium, the 
phase space distribution for the system is Maxwell-Boltzmann and thus the con- 
figuration space distribution is 

p ( q )  = const. exp [ - (giipcpi + x j q i q i ) / 2 k T ]  dNp.  (4.2) s 
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On performing the integration this gives 

p ( q )  = const. g* exp ( - V / k T ) ,  where g = det gi j .  

This result was derived by Kramers (1944) and also Kirkwood & Riseman (1948). 
Note that since g) is in general a function of the q's we do not have a simple Maxwellian 
distribution exp ( -  V / k T ) .  In  addition we see that the stiffness of the constraining 
potentials in no way affects the derivation. 

If then for c, we take the particular formt 

qj = (2 _ ......................... I 38AJ 
with V,, EA,  V,, all functions of the qa only, then, in the limit E + 0 ,  

p + const. go) exp ( - qaqj) n 6(qA) 
A 

(4.3) 

with 6( ) a Dirac delta-function, and the superscript 0 indicating evaluation with all 
q A  = 0. If however we had taken E = 0 ab initio, then the q A  co-ordinates would never 
have appeared, and we should have obtained 

with 

p = const. g'$exp ( -#$qaqa/kT) n 8(qA) 

g' = det gal. 
A 

(4.4) 

Thus the two cases are the same, and no paradox arises, if and only if go = g' to 
within a multiplicative constant. It is easy to show that for systems which are rigid 
(after constraining) go = g' always (see the dumb-bell case in $4.2) and therefore 
problems only arise for systems with internal degrees of freedom, and the trumb-bell 
would seem the simplest such ($4.3) .  It is also easy to show via Lagrange's equations 
that the classical dynamics of the constrained system are the same as the limiting 
form for the unconstrained system, so that it is solely the thermodynamic aspects 
which are responsible for the difficulty. The problem here is exactly the same as 
occurs for the specific heat calculation (see Sommerfeld 1956, $ 30), and its resolution, 
as there, is via quantum mechanics. 

4.1.3. Quantum thermodynamic equilibrium. We now suppose that the q A  co- 
ordinates are quantized, while the qa remain classical. Then for given pa, qa the set 
of allowable energies is quantized, and can be labelled by a quantum number n 
characteristic of the state, En. Then the Maxwell-Boltzmann distribution gives 
(Landau & Lifschitz 1959,s 28) 

f (n; pa, qa) = const. exp ( -En(%, q a ) / k T ) ,  (4.5) 

and (4.2) is replaced by 
m r  

Now, we assume that the energies are decomposable into two contributions, one arising 
from the quantized degrees of freedom, and one from the classical. 

Quantum contribution. Writing 

t The more general case in which VAB also depends on the pa is considered in appendix A. 
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where as given earlier, gQAB = (gAB - qAa g;; gaB)-', 

we can write the Hamiltonian for the quantum part as 

= i g Q A B p A  pB + *.-'8AB PA q3. (4.7) 

Furthermore, since the vibrations are (by definition) small, we may evaluate gQAB a t  
q A  = 0, and at fixed values of the q a ,  pa which therefore appear only as parameters 
here. (Similarly, there is no reason in principle why we should not make our choice of 
pot,ential considerably more complex : SAB is the simplest available which demonstrates 
the features we are interested in. Appendix A explores this point further.) Now 
(4 .7)  is the Hamiltonian for a set of coupled harmonic oscillators, and so the associated 
energy levels are (e.g. Fay 1965, Sj 12.5) 

N 

A = M + 1  
E = C (nA 4) ~ V A ,  (4.8) 

where the nA are integers and the normal mode frequencies vA satisfy 

det (gQAB-  (U'/C')SAB) = 0 (4.9) 

and are, in general, functions of the qa through g Q A B .  
Classical contribution. Here we effectively have all the q A  = 0,  so writing 

gcap = 9;) J*A'o, (4.10) 

Thus collecting together the two contributions, and substituting in (4.6), we have 
the kinetic energy from the classical degrees of freedom is &gCappa pa. 

m r  

(4.11) 

A 

where g' is as defined in (4.4). 

energies for the 'frozen ' degrees of freedom is to introduce a new factor 
On comparing (4.4) and (4.11) we see that the effect of including the quantum 

exp ( - C v , / k T ) / n  ( 1  - exp ( - KvA/kT) )  
A A 

into p(q). If the v A  are independent of the qa, this is just a constant and therefore 
irrelevant. If, however, the quantum energies vary with the classical co-ordinates, 
which is a common feature of systems with internal degrees of freedom, then this factor 
must be included. 

We note too that this resolves the discrepancy that arises from classical thermo- 
dynamics in computingp(q) by the two routes. For now if we take the limit & v A / k T  -+ 0,  
so that the quantum states become more energetic and so classical, we find 

p(q) = const. 9') exp ( - V / k T )  n 8(qA)/n vA, 
A A 

and, using (4.9)) this gives 

p(q) = const. go+ exp ( -  V / k T )  S ( q A ) ,  
A 
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thereby recovering the classical result (4.3). Those treatments that  have not included 
the quantum behaviour of the constrained co-ordinates a t  all (Kramers 1944; Kirk- 
wood & Riseman 1948; Curtiss et al. 1974, Bird et al. 1977) have thus failed to account 
for the variation of the zero point energies of the suppressed degrees of freedom with 
the retained classical co-ordinates. This is the heart of the problem, and explains t,he 
danger of simply ignoring the constrained co-ordinates as if the system were classical: 
such a simplification may be valid for the mechanics, and yet not for the statistical 
mechanics of a system. 

We now illustrate the analysis by evaluating these limits for two very simple 
systems, the dumb-bell and trumb-bell. 

4.2. The dumb-bell 

We consider a dumb-bell with beads of equal mass (though the conclusions are wholly 
unaltered €or the unequal mass case). Axes are chosen at the centre of mass, and the 
state of the system is described by spherical polars so that (ql, q2, q3) = (8, $, r ) .  Then 
setting aside the irrelevant centre of mass motion, the kinetic energy is 

T = &m(r2d2 + r2 sin2 &d2 + P),  

which gives and go = +m3r2sin8, 
0 0  

and thus 
0 

and g' = arn2r2 sin 8 = const. x 80. 

I n  other words, for this system there is no difference in the equilibrium configuration 
before and after the freezing of the spring. Hence, results (Giesekus 1956; Prager 1957) 
for the rheology of a rigid dumb-bell suspension are consistent with those for the 
stiff-spring dumb-bell. The crucial degeneracy associated with the dumb-bell is that 
after freezing no internal degree of freedom remains. 

4.3. The trumb-bell 

Again, taking beads of equal mass, and setting aside the motion of the centre of mass, 
we are left with a system of 6 degrees of freedom. This can be dealt with by using 
spherical polars for each of the connectors; but, following Hassager (1974a), we can 
simplify these by factoring out an overall rotation of the plane of the trumb-bell so 
that only 3 co-ordinates are required (ql, q2, q3) = (8, bl, b2).  Then we may write down 
the kinetic energy for the system, and after some straightforward manipulations can 

g' = m( 1 - & cos28)+ sin 8, (4.12) 
show that 

while (4.13) 

Thus, v1 = v( 2 - cos €94, v2 = v( 2 + cos 8): where v is a constant. So defining Q = ?iv/kT 
as in (3.5), we have finally that 

exp { - Q[(2 - cos 8)B + (2 -t- cos 8)a]) 
{ 1 - exp [ - 2Q( 2 - cos 8)4]} { 1 - exp [ - 2Q( 2 + cos 8) t]}  ' 

p(8) = const. sin 8( 1 - $ cos28)4 

(4.14) 
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a 

Hassager (1974al result i 

1 I\\' 

0 n/Z n 

FIGURE 2. Equilibrium distributions p,(O)/sin 0 for the included angle 
of a trumb-bell normalized to unity a t  0 = 0. 

I n  the classical rigid limit Q-+ 0 this gives p - const. sin8(1+ O(Q2) ) ,  while in the high 
quantum limit Q -+ co, 

p - const. xsin8(1-~~os~8)*~exp{-Q[(2--cos8)B+(2+cos8)*]}.  

(This latter result is not wholly consistent however, in that when Q becomes sufficiently 
large it is no longer valid to  regard 0 as a classical co-ordinate, and indeed a t  sufficiently 
low T (i.e. Q -+ co), the overall rotation of the system is also quantized.) For purposes 
of comparison, it is convenient to set aside the sin 8 term which merely arises from the 
spherical polar angular integration and concentrate on the remaining factor. When 
the Q -+ 00 approximation is sensible, then, it is clear that p/sin 8 is non-zero only 
near 8 = 0, n (i.e. when the trumb-bell is stretched out or folded back on itself), and, 
for all Q, the effect of including the quantum energies is to enhance the tendency for 
the system to be in one of these states rather than a t  some intermediate angle. If the 
variations in zero-point energies are not included (Hassager 1 9 7 4 ~ )  then we obtain 
instead of (4.14) 

p(8) = const.sinO(1 -$cos28)* 

for which the 8 = &7r state is preferred to 8 = 0,n. The various distributions are shown 
graphically in figure 2 (where, for convenience of display, the multiplying constants 
have been chosen to make lim p(B)/sinB = 1 rather than by normalizing p so that 

8-0 
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4.4. The Rouse chain 

The complexity of the result (4.14) for the trumb-bell suggests that  analogous results 
for general N will be exceedingly complex. Fixman (1974) has considered the problem 
of determining g' and shows that 

B = A ,  
g Q A B  = C O S ~ ~ ,  B =  A + 1 ,  (4.15) r otherwise, 

indicating that, for general values of the angles 0, between the rods, the results will 
rapidly become too complex to  handle. 

Further analytic progress is possible in two cases, however: either when the chain 
is nearly fully extended (by being immersed, say, in a strong stretching flow; see 
3 5.3), or when Q +  0 and the conformation is a random walk (Flory 1969). A simple 
description of the overall size of the molecule is provided by its r.m.s. end-to-end 
vector r, and for a random walk we have 

(r2)4/N1- N-4 as N+oo and Q-. 0. 

For non-zero Q, the effect of the quantum terms is to  introduce additional angular 
potentials a t  each bead (this is most clearly seen in $ 5 ) .  As Flory (1969) notes, as 
regards the conformational statistics of a macromolecule, these potentials are equi- 
valent to  changing the persistence length of the chain, so that a chain of N units of 
length 1 with potentials is equivalent to a chain of N units oflength 1' without potentials. 
For Q-+ co, the strong bias in favour of 6 = 0, 7~ will mean that the configuration is 
approximately that of a one-dimensional random walk; while for &+ 0, the trumb-bell 
analysis of $ 3  4 and 5 indicates a relation of the form 

1 + 0(10-3Q4), Q +  0, 
1' =f(Q)l with f ( Q )  = ( 

1 +O(I/Q), Q-,  a, 

giving (r2)h/Nl - N-$f ( Q ) .  

Thus the influence of Q on the equilibrium length of the macromolecule is small, 
though its aspect ratio will be greater as Q increases. 

5. The diffusion problem in the rigid quantized limit 
5.1. General cme 

We now suppose that our (general) system is no longer in thermodynamic equilibrium 
because of the fluid forces on it, and we seek to calculate the effective entropic forces 
which are attempting t o  restore it to equilibrium. This may be achieved by a detailed 
analysis in phase space (see e.g. Curtiss et al. 1974), but the time scale for adjustment 
of momentum is very short, and so the momentum part of phase space can be assumed 
in equilibrium, and a generalization of the Einstein argument will produce the necessary 
fluxes. 

Hence, given some configuration space probability distribution p(q"), we imagine 
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this as a hypothetical equilibrium for the system with some suitably chosen external 
potential VE(qa). Then p must satisfy (4.1 l) ,  and 

VE = - k T  log ( p / h )  

where h(qa; v A )  = g'l  exp [ - @Xv,/kT]/n [ l -  exp ( - Av,/lcT)]. (5.1) 
A 

Now the generalized force on a particle due to  the presence of this potential is 
- aV,/aqP, and thus if the mobility tensor is <-laF there is an advective particle flux j 
given by 

This must be balanced by a diffusive flux, which is therefore lcT[-I-'@p a(logp/h)/aqP, 
and hence we identify the generalized entropic force as - kTa(logp/h)/aqf. 

It is now a straightforward matter to set up the diffusion equation for the problem. 
We follow Kirkwood & Riseman (1948). Probability conservation gives 

j. = - p ~ p  av,/aqP. 

and j .  = pa". (5.3) 

The 'force' on the system has been derived as - aV/aqa- kT a(logp/h)/8qa, where V 
represents internal and external potentials, and this must be balanced by a hydro- 
dynamic force L&(uP- qp ) ,  where upis the appropriate component of the fluid velocity. 
Thus 

and ( 5 . 2 ) ,  (5.3) and (5.4) can be rearranged to give 

Q" = ua- f;-laB(aV/aqP+kT a(logp/h)/aqj, (5.4)t 

(5.5) 

where the diffusion tensor D = kT<-l, (5.6) 

and p =  V-kTlogh. 

Hence, the diffusion equation is precisely as we would have expected, except that  a 
new term - kT log h must be added to  the potential for the system to take account 
of the quantum energies of the frozen co-ordinates. 

The average particle stress is then given by 

where s is the stresslet exerted by one particle on the fluid, and ?z is the number density 
of particles. We now illustrate these general principles by analysing the rheological 
properties of a suspension of trumb-bells and of Rouse chains. 

t I n  fact, in (5.4) we have made the simplest possible assumption about the hydrodynamics. 
In  goneral there can be an additional flux in configuration space arising from components of u 
outside that space, 0.g. for an extensional flow which is trying to ' pull apart ' a. rigid (modified) 
dumb-bell aligned with the principal axis of extension tliere is no component of u in tlie con- 
figuration (rotation) space of the system. Nevertheless if t,he ' beads' of the dumb-bell have the 
right shape, i t  may rotate, and thus give a probabihty flux (see Erpenbeck & Kirkwood in Kirk- 
wood 1967). 
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5.2. Rheological properties for the trumb-bell model 

The mathematical details involved in using these quantum models become complex 
very rapidly. Two cases in which analytic progress can be made are weak flows and 
potential flows. We examine these in detail. 

Weak Jlows. Earlier workers (e.g. Hassager 1974a) have found that the simplest 
available rheological property, the zero shear viscosity, is independent of their various 
solutions for the equilibrium probability distribution. We shall reach the same conclu- 
sion here. The ‘first ’ case where the quantum influence can be demonstrated and which 
we can analytically find, then, are the normal-stress-differences (in fact the first, for the 
second always vanishes for this type of model), and we can again compare with the 
classical result, and that of Hassager ( 1 9 7 4 ~ ) .  

We do not present a detailed analysis for the computation of the stress tensor here. 
It is shown by Hassager ( 1 9 7 4 ~ )  that a more convenient form of (5.7) is 

- nlJ2 S 
3 st 

g P  = -_ (cos2 &9S3S3 + 3 sin2 pS,S,), 

where the unit vectors S,, S3 define the plane of the trumb-bell as shown in figure 1 (b). 
5 is the friction coefficient for the beads, 1 the length of a rod, and S/St an Oldroyd 
derivative given by 

S a 
6t - (  1 ‘at( ) - ( V U Y . (  )--( ) . ( V U ) .  

Now correct to quadratic terms E . E and SE/St (assumed of the same order) it may 

(5-9) 

be shown from ( 5 . 5 )  that 

p = p,[l +<12/2kTE: (cos2iBS3S3+ 3sin2+8S,S,)], 

where pe is the equilibrium probability distribution given by (4.14). Thus, to find the 
second-order fluid behaviour, it  remains only to substitute (5.9) into the configuration 
space averages in (5.8). This gives rise to the retarded motion expansion 

g p  - = - pi+ 2b1 E - 2b28E/& + 0(P3) ,  (5.10) 

where P is the PBclet number given by (3.3), and it may be shown that the dimension- 
less forms for the constants are given by 

gl E b,/n<12 = +( 2 - JJJ,), 

and 

6 ,  = kTb,/nc214 = &( 1 3J,/J, - 1 6J1/J,  + 7) 

J, = 1; cos” Ope(@ dtl. 

(5.11) 

(5.12) 

Now in all the cases considered, pe is even in 8 about an and hence J1 = 0. This gives 
rise to the observation above that the zero shear viscosity is given by 6, = Q in all 
cases. The various values of 8, which have been obtained are shown in table 2, and in 
graphical form in figure 3. It will be seen that the variation in 6, for Q 6 1 is very small, 
10-3Q4, and this indicates that under normal circumstances the quantum effect on the 
rheological functions will not be very important. It further strengthens the case that 
the additional mathematical problems posed by handling generalized co-ordinates are 
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Classical case 

Hassager (1974a) 

Quantum caae Q -+ 0 

Quantum cam Q -f m 

2 
9 

1 - 4 

(present work) 

- = 0.0210 
810 

1 80n+3,/3 
1080 2a+3J3 

17 13 

= 0.0207 

Q4 + O(Q9)  K?('+iiz5 
1 

-(1+ O(e-Q)) 

0.04 

0.02 

0.0 I I I I 1 I I 

10-2 10-1 1 10 102 1 0 3  104 

FIGURE 3. Variation of the first normal-stress-difference 
with Q for a trumb-bell suspension. 

Q 

not rewarded by attendant improvements in the quality of the answers: quantum 
effects are undoubtedly part of the physics of the problem, but seem to have little 
effect on the rheology, a t  any rate for weak flows. 

Strong jlouis. I n  order to exploit the known solution of the diffusion equation for 
potential flows, we consider a steady extensional flow 

It follows (Hassager 1 9 7 4 ~ )  that 

p = peexp [ C. ri.  E .  ri/2D]. 
beads 

(5.13) 
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P+O Q+O 

P. 

&+a ; [ 1 + $ + O( i ) ]  

K = [ n / ( 3 - J 3 ) ] 4  
Strong flow: 

1 6 1 1 8 + 9 ( 3 -  13 

-3 7 + 2 ( 3  - 4 3 )  + O (k) [ -3 7 + 2 ( 3  - j 3 ) )  + '($)I 8 =  ZP+m 

2 = Q/ZP arbitrary 

TABLE 3. Asymptotic results for the trumb-bell in extension. 

-3.0 lo  3.0 

3 = 2 P  

FIUURE 4. Extensional viscosity for a trumb-bell suspension. 

This solution corresponds to a balance between advection and diffusion in (5.5). pe is 
the equilibrium solution given by (4.14). Now, referring to figure 1, this may be written 

p = peexp{Z2E: [cos2+OS2S,+ 3sin2486,S2]/2D} 

or, by means of the Euler angle (x, q5, II.) representation of the Si-triad, 

p = p,(O) exp {QB[cos2 @(3 sin2xsin2 11.- I )  + 3 sin2 48(3 cos2 $ sin2x- I)]), (5.14) 

where 0 < II. < 27r) 0 < x < TI, 0 < O < 71, and the PBclet number B is as defined in 
(3.4). The particle stress is given by (5.8), and is most conveniently represented by 
an extensional viscosity pe  (defined so as to be equal to the shear viscosity for a New- 

tonian fluid), thus $, = pe/nC12 = 6 p :  E/12nC12E2 
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I 

-3.0 
0-6 I 

1 3.0 
9 = 2 p  

FIGURE 5. End-to-end length for a trumb-bell in an extensional flow. 

and with our chosen co-ordinate system this becomes 

,??, = & (cos2 $8[3 sin2 x sin2 9 + 11 + 2 sin2 48[3 sin2 x cos2 9 + 11). (5.15) 

An appropriate measure of the size of the macromolecule is the end-to-end length 
given by 

(r) /21= (sin$@. (5.16) 

These two quantities which may be taken as representative of the rheological influence 
and geometry of the molecule may now be obtained by substituting the known form 
of p from (5.14) into (5.15) and (5.16) and performing the threefold integrations 
numerically. Asymptotic results for small P can be obtained from the previous section, 
and for large B by simplifying the integrals. These asymptotes are given in table 3. 
It is again seen from the numerical results (figures 4 and 5 )  that the effects of non-zero 
Q are small, and are largest for intermediate flow strengths. 

5.3. Rheological properties for the Rouse chain 

WeakJlot~.  The technical complexities discussed in 5 4.4 bedevil a detailed solution 
for general N .  For the classical Q = 0 case, a solution for the zero shear viscomet'ric 
functions is given (Rallison 1977; Hassager 1974a) by 

where fi,2(0) = 1, and, since it is the overall particle radius which determines its 
hydrodynamic influence, it is anticipated that the behaviour of f1,2 will be much the 
same as that off ( Q )  discussed in § 4.4. 

Strong Jloui. We consider finally a Rouse chain immersed in a strong extensional 
flow a t  sufficiently high PBclet number 9 that the chain is almost fully extended. As 
noted in fi 3, when 9 3 1, the appropriate measure of the importance of quantum 
mechanics is 2 = Q / N P .  The geometry of this extended structure is most easily 
specified by its length measured along the direction of extension, r,,, and its mean 
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square dispIacement perpendicular to  that direction at the pth bead, ry .  The rheo- 
logical influence can be specified by an extensional viscosity as in $5.2.  Thus for 
B > 1 we have (5.17) 

( r , , ) /Nl  = 1 +B-lb(9,  N )  + 0 ( P 2 ) ,  (5.18) 

( r T ) / l =  P - l c P ( 2 ,  N )  + 0(8-2), (5.19) 

,G, = a , (N)  +8-la1(2,  N )  + 0(9-2), 

and our task is to determine the functions a,, b and c p .  

As in the trumb-bell case, we have an exact solution to the diffusion equation, 

p = pe exp [ s ri . E . ri/2D] = pe exp [Z2A-liibi. E . bi/2D] (5.20) 
beads 

where the ( N  x N )  structure matrix A (called g-l by Hassager 1974a) is specified by the 
topology of beads and rods. For a Rouse chain, 

2, i = j ,  
i ( N  + 1 - j ) / ( N +  I ) ,  i < j 7  
j ( N  + 1 - i ) / ( N  + I ) ,  j G i. 

- 1, i =jk 1, and = 

0 otherwise 

Aii = 

Now the form of expression for p may be greatly simplified by exploiting the condition 
B B 1. This is discussed in appendix B. We find on the assumption that Q < N P  
(which is satisfied for typical values of N for a real macromolecule) that (B 6) 

p N const. ( 1  + P 1 ~ ; , ( x i  x, + yi y,)) exp {[2SnTij + LJ [xi xj + yi Y ~ I } ,  
where the matrices N, L are defined by (B 5 )  and (B 2), and x’s and y’s represent the 
deviations of the rods from full alignment with the flow direction, multiplied by the 
large 9 4  factor. Lij here corresponds to the flow in (5.20) while each Nii derives from 
one of the normal modes in pe. d’ may be determined explicitly, but since i t  cancels 
in the final results, we do not give i t  here. It is convenient to define Rij = Lij + %CN,,. 

With our solution for p it  is now a straightforward but tedious matter to evaluate 
the quantities of interest. We relegate the mathematical details to appendix C. The 
problem is there reduced to the inversion of the N x N matrix Rij .  For small N this 
may be achieved analytically (for N = 2 the results agree with those given in table 3 
for the trumb-bell), but for moderate N a numerical solution is required. For large 
N ,  asymptotic estimates are possible. It is easily seen from (B 2 )  that, as N -+ co, 

B L  - P diag ( N ,  . . . , r (N + 1 - r ) ,  . . . , N )  

and thus the flow induces effects which increase as N P  for the ends of the chain (this 
is the magnitude of the flow velocity a t  the fullest extent of the chain and hence the 
tension in the end segments), and as N 2 P  for points in the middle (the tension in the 
central segments). I n  addition, as N + 00, CN,, takes the (tridiagonal) form 

4.. . . 
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I t I I I 

10-2 10-1 I 10 I 02 
9 

FIGURE 6 .  Geometrical and rheological properties for an almost fully extended chain. Numerical 
results for N = 10, 30, deviation from full extension. (a)  Mean square displacement a t  the centre. 
(b )  Mean square displacement a t  an end. (c) Length measured along principal axis of extension. 
( d )  Extensional viscosity. 

TABLE 4. Asymptotic results for an almost fully extended chain 9 -+ m, N + 00. 

The ai are all order one constants, y = 0.577 Euler’s constant. 

Determination of R-1 in this asymptotic limit now shows that the quantum terms 
will become significant for displacements of the end segments at 5’ = 0(1), and for 
middle segments when 5’ = O(N/log N ) .  The contribution of the particle to the stress 
is dominated by the longest mode of deformation, and hence again 9 order unity 
measures the importance of quantum effects in the rheology. 
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Numerical results for N = 10, 30 are plotted in figure 6. Asymptotic results for 
N-+  03 are given in table 4. At 9 = 0, the numerical results for N = 30 are within 
4 % of the result given by the asymptotic formula. The shapes of the curves for the 
end-to-end length and the extensional viscosity are very similar, supporting the 
conclusion that the overall distortion describes the dominant energy-dissipating mode. 
Physically plausible values for 9 all lie in the plateau region with 9 < 1, again showing 
that quantum effects are small. 

6. High frequency behaviour 
In  the paper so far we have been concerned with either steady states, or with weak 

flows whose time variations were assumed comparably slow (second-order-fluid 
expansion). We turn briefly in this section to the physics of unsteady motions for weak 
flows (linear viscoelasticity), and in particular the limit of infinitely high frequency 
(w) .  The principal motivation for the discussion here is the work of Fixman & Evans 
(1976) who, in considering a Rouse chain with fixed bond lengths and with angular 
constraints which can be frozen, demonstrate that the limits of infinitely high stiffness 
and w+03 may not commute. It may be thought that the quantum-mechanical 
analysis presented in the earlier part of this paper would bring together these two 
limiting procedures, but, in fact, this is not the case. We shall show that a fundament- 
ally different, classical, phenomenon is responsible, and by using an elastic dumb-bell 
model (for which we showed in 8 4.2 that no quantum-mechanical paradoxes arose) 
will demonstrate that the two effects are distinct. 

6.1. Elastic dud-bell model 
As in 0 4.2 we consider a Hookean elastic dumb-bell of non-zero equilibrium length E 
immersed in a weak flow E eiWt with P 4 1. The connector force is ~ ( r  - 1) when r is the 
length. There are two non-dimensional parameters characterizing the time evolution 
of the structure: the non-dimensional stiffness A2 = d2 /kT;  and the non-dimensional 
frequency fz = Cl2w/kT. The rheological influence of the particles in the suspension is 
most conveniently given for weak flows by a non-dimensional complex viscosity 
F(R, h2): the ratio of the stress to twice the rate of strain. We shall be concerned to 
derive the value of ,2 in the two double limits R + 00, A + 00; A+ 03, R + 00. 

Governing equation. If r is the end-to-end vector for the dumb-bell, then we have 
as in (5.4) for the equation of motion of the dumb-bell 

C(E.r- f )  = K(r-l)r/r+ETVlogp, (6.1) 

(6.2) 

together with a conservation equation for the probability, 

aplat + v .pf = 0, 

and finally for the particle stress, we have 

6 p  = -n&(E.r - i - ) r )  = --- 1'; ( r r ) .  

The equilibrium solution for p is then (in non-dimensional form) 

pc = const. exp ( - +P(r  - 1)*) (6.4) 
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and hence, for weak flows for which the perturbation t o p  must be linear in E, 

giving from (6.3) that 
p = pe(l+r.E.rg(r;s1,h)/r2+O(p2)), 

From (6.2) the function g satisfies 

g"+2/rg'-6/r2g-A2(r- l)g'-iQg = -h%(r-l)  (6.5) 

with boundary conditions 

g = O(r2) as r+ 0, g = o(exp (+h2(r- 1)2)) as r+m. 

Now, for large values of A, it is easy to see that only the behaviour of g near r = 1 
affects f i ,  in particular, 

and hence by means of a numerical solution for g (given h B 1, 51 varying) ,2 is easily 
computed. In addition, we may obtain analytic results for B < h2, 51 B h2. These are 

ia 

with h(1) = 4 for 51 $= h2, 

and hence 

The solution (6.6) for 51 < h2 can be obtained independently, as might be expected, 
by considering a suspension of rigid rods with just two degrees of freedom; this is 
merely a particular case of the more general conclusion of Titulaer & Deutch (1975) 
and Titulaer (1977) that, for motions at finite frequency, the results for an initially 
rigid system (with Lagrange multipliers to handle the constraints) are the same as 
those for a springy system in the limit of rigidity. Both (6.6) and (6.7) may also be 
checked by means of a numerical solution of (6.5). In  figure 7 we show values of &, 
Fi (the real and imaginary parts of ,2) obtained for A2 = 50, compared with the rigid 
rod value (6.6). It is seen that for small 51 the deviation is indeed small, but that, for 
larger 51, p, decays more rapidly and falls below the asymptotic value & given by 
(6.6). The value of pi is slightly higher than that for a rigid rod, but both decay to 
zero as 51 increases. 

We see that even when R > 1, (6.6), corresponding to freezing into rods first gives 
rise to the non-zero value & unequal to (6.7). We have thus reached the same 
conclusion as Fixman & Evans (1976): the stress generated by the dumb-bells 
apparently depends on the order in which the limits h -+ co, -+ co are taken. 
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FIUURE 7. Real and imaginary parts of the complex viscoeity for a dumb-bell. A* = 60. 
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Physical explanation. The discrepancy between the two approaches can be seen most 
easily by means of (6.1) and (6.3). At high frequency the Brownian term is unimportant 
and, in an order of magnitude sense, 

[ ( E r - i )  W K(T-Z ) ,  6CCr(Er-P). 

Now when the springs are frozen into rods first, i = 0, r = 1, and uoc Ela. If, on the other 
hand, K is large but finite, then at frequencies w sufficiently large compared with K/C,  

r - 1 % El/(iw f K / [ )  

and so 

In other words, as w + 00 the magnitude of variations in length tends to zero as the 
rigid rod analysis (correctly) assumes, nevertheless the terms i and Er remain com- 
parable (and are equal in the limit). Hence, the dumb-bell moves minutely but with 
the fluid at leading order and therefore generatee no stresses. 

I0 FLY 93 
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FIGURE 8. Variation of high frequency limiting viscosity with Q for a trumb-bell. 

6.2. Relevance to more complex systems 
We have noted that provided RIA is not too large, the high frequency behaviour is 
correctly given by freezing the dumb-bell first. It follows that in systemswithanumber 
of ‘stiff’ degrees of freedom based on this criterion (which is, of course, independent 
of the quantum-mechanical one), the correct high frequency behaviourwill be predicted 
by freezing those variables while the remainder are left flexible. In  fact an example 
is the analysis of Fixman & Evans (1976) for a Rouse-Zimm chain. There the rod 
lengths are fixed a t  the outset and it is only the angular degrees of freedom which 
are called into question. In  consequence, neither of the results for i; is zero as in the 
simple calculation of $6.1, but the two results differ. 

6.3. Injuence of quantum efSects at high frequency 
The discussion above has concerned entirely classical physics. It indicates that at 
frequencies low compared with the (quantum) frequencies of oscillation of the rods 
in a bead-rod chain, there will be a non-zero complex viscosity. Further, the value of 
this viscosity will depend upon the strength Q of quantum effects since, as noted in 
9 5.1, these introduce effective additional angular potentials. By way of illustration 
we give the result for a trumb-bell. 

As shown by Fixman & Kovac ( 1 9 7 4 ~ )  with appropriate change of notation, 

i; + 3 / ( 4 - -  cos2e)) w+ 00, 

and the average may be taken at thermodynamic equilibrium. (This result is easily 
derived on noting that to sufficient accuracy the probability distribution is unchanged 
from its equilibrium value; that the diffusion stress vanishes as w + co; and that the 
remaining hydrodynamic stress is due to the tensions in the inextensible rods.) The 
appropriate equilibrium distribution is given by (4.14) and $(Q) is then easily obtained 
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numerically. The asymptotic result (Q-t 0) ,G N &log 3 agrees with Fixman & Kovac 
(1974a). In  figure 8 the variation of this high frequency limiting viscosity with Q is 
plotted. The variation is small, and only manifests itself for large ( 2 10) values. 

7. Conclusions 
We gather here the principal results and conclusions of the paper. 
1. The classical statistical mechanics of a system may predict quantitatively 

different results when certain components of that system are permitted to become 
rigid constraints rather than spring-like connectors ($ 2). 

2. A proper treatment of such a system requires quantum mechanics, and the 
importance of the quantum nature of the physics may be estimated by a dimensionless 

3. The inclusion of quantum effects makes the limit of rigidity consistent in the 
sense that when Q+ 0 the classical results with stiff but flexible connectors are 
recovered ($ 4). 
4. For a linear hydrodynamic macromolecular model, the quantum terms may 

effectively be replaced by additional potentials hindering the free rotation of adjacent 
polymer segments ($  6 ) .  
5. The influence of the quantum terms on the rheology and on the molecular size 

appears to be small for both weak and strong flows ($ 6 ,  $6.3).  
6. For weak but rapidly varying flows, an entirely separate difficulty arises in con- 

nexion with rigid constraints. A classical analysis demonstrates that at sufficiently 
high frequency any flexible connector will ultimately move with the applied flow and 
so exert no stresses. A rigid connector, however, will continue to exert forces on the 
fluid ( $ 6 ) .  

In  regard to the determination of flow properties for polymer solutions, which 
provides the motivation for this paper, a more general conclusion is in order. The 
results for quantum-mechanical systems very rapidly become complex and mathe- 
matically intractable. In  order that a model be useful it is necessary that it not be too 
complicated, though, on the other hand, it should still include the important physics. 
We have seen that the quantized nature of the structure can be important (in the 
sense that without it the results may not be consistent), but the numerical influence 
of the parameter Q on the rheology is small. The compromise strongly suggested then 
is that the self-consistent limit &+ 0 be employed in polymer modelling: in respect 
of the thermodynamics rigid constraints must not be used in such a formulation when 
internal degrees of freedom remain, but must be replaced by stiff springs; never- 
theless the computations are rendered far more tractable without substantial loss of 
accuracy. 

group Q (§ 3). 

Appendix A. Thermodynamic equilibrium for a general system 
In  $ 4  we considered the equilibrium statistics for a system in which the metric 

tensor gQ for the quantum modes is a function of the classical co-ordinates qa. For 
simplicity, however, the quantum potential V,, was taken as E - ~ & ~ , .  In general, 
however, we must expect that V,, also varies with the qa, and the question arises as 
t o  how the conclusions are modified. 

10-2 
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We note first that for the classical system, with all degrees of freedom present 
initially, in the limit E-+ 0 (4.3) is replaced by 

p+ const. (go/det GB) exp ( -  )V,qaqj)  S (qA) .  
A 

(4.3)' 

Of course the classical expression for the case when the qA never appear is unaffected 
by the dependence of V', on qa. It follows that the discrepancy between the two 
classical approaches is even greater here, for only when 

9' = go/det V , B  

(to within a multiplicative constant) do they agree. 

too, for now the eigenfrequencies of vibration V, satisfy 
On the other hand, the introduction of quantum mechanics resolves this difficulty 

det (gQ"B-  (va/ea) &B) = 0, (4.9)' 

and hence nvA = (!?/g')*/(det G B ) "  

In consequence, in the limit &+ 0, the result (4.3)' is recovered. 

Appendix B. Determination of the probability distribution for a nearly 
fully extended chain immersed in a strong flow 

included angles 0, between the rods so that 

and then (4.15) becomes 

Determination of the equilibrium distribution pe. It is convenient to rescale the 

ei = n - 9-i $i 

At leading order, the eigenfrequencies of vibration v, (n = M + 1, ..., N) are those of 
A, and the perturbations can be calculated by means of an eigenmode decomposition 
of A. This gives 

[ $2 sin 2nA sin 47th + . . . 1 
v, = 2sinnh 1+ { 4(N + 1) sin2nh 

where h = n/2(N+ 1).  pc is then given by (4.11). 
Determination of p. It remains to find the potential flow term bi . E . bi, and then p 

is given by (5.20). We follow Hassager ( 1 9 7 4 ~ )  and choose spherical polar co-ordinates 
(yi, @) relative to the principaI axis of extension for each b6, 

bi = (cos (n - yi ) ,  sin (n - yi) COB @, sin (n - yi) sin @), 

which again may be simplified on noting that yi < 1. Now choosing local Cartesian 
co-ordinates xi, yi with 

xi = 9iyicos@, yi = @iyisin@, (B 1) 

we obtain 

and so 

bi . E . b'/2D = (xt +yf + $ + y; + xi ~j + yi yj), 

A-"jbi. E . b'/2D = ~j + yi yj), 
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(B 2 )  

Finally in this representation we note that 

and thus (5.20) gives 
?4 = (Xi - %*+Aa + (Yi - Yi+1)* 

P const. (1 + 9-1..u,,(xi xj + yi Y,)) exP 9r9 x &j(% xj + Yi 24) 

+Li,(~i~,+yiy,)l / l-I  [1 -=p- 29(28sinnh+N,,(~iz,++iy,))lY (B 3) 

where Jij(zd zj + yj) = x [(xi+1 -zi)' + (Y~+I - ~ i ) ~ l  (B 4 )  

n 

n 

i 
and 

{[ (za - xl)2 + (y2 - yl)'] sin 2nh sin 4nh 
1 

&,(%xj+Yi93) = 2 ( N +  l)sinnh 

+ ... +[(xN-xN-l)a+(ylN-yN-1)~sin2N- lnAsin2NnA]}. (B 5) 

Asymptotic forms for p. The exponent in each term of the denominator of (B 3) has 
the form -29(2s innh8+Ni3(x i : i ,+y iy j ) )  with Nij N O(1). Thus if 9 < 1, the 
dependence on x and y can be expanded. This is the physically realistic case. In 
addition, when Q % 1 the denominator becomes unity. In either case, p has the 
particularly simple form 

p N const. (1 + 9-1 dij(xi x, + yi y,)) exp 9[Rij(z* 2, + yi yj)1 (B 6) 

where Rij = Lij + 9 I; Nij.  
n 

Appendix C. Evaluation of geometrical and rheological functions for 
an almost fully extended Rouse chain 

the chain is almost fully extended. 
1. Qwzntitiw of interwt. We first simplify the forms of the rheological functions when 

(a) Extensional viscosity. As in § 5.2 we have that 

fie = fill.-"' (4bj bf + b: b{ + bi b{)  

and so simplifying with our choice of the bi we obtain 

fie = &N(N + 1) ( N  + 2 )  (1 + PIT$Y(xi xj + ~4 yj) + o(g-')), 

where 
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( c )  The mean square displacement 

( r f ) / l  = 9 - 1  Ti;)(xi x, + gt y,) + 0(9-2) 

Ti?) = S,,S,, (no sum). 
and, by the same technique, 

2 .  Lemma on Gaussian integrals. The integrals which must be performed to evaluate 
the averages in the expressions above are all of Gaussian type as 9 --f co. We therefore 
write down an important lemma: 

If I (A)  is defined by 

00 

I ( A ~ , )  = J w  ...j ( 1 + A z l x a ~ , +  ...) e x p [ - ~ B , , ( x * ~ , + . . . ) ] n : d x , ,  
- w  --OD n 

where each expansion is asymptotic as 1x1 + 0, then 

3.  Evaluation of properties. By use of the lemma, the coefficients in the expressions 
(5.17-5.19) may now be calculated with the form forp derived as (B 6). These are 

b ( 9 ,  N )  = R$ Ti?); cP($, N )  = R$ Ti;’. (C 4) 

The problem has thus been reduced to one entirely of matrix algebra: given N and 
9, R is determined by (B 7),  and the matrices L, N are given by (B 2) and (B 7); R 
may be inverted numerically, and the functions a, b, c p  are then easily determined. 
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